As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Faster data speeds, shorter end-to-end latencies, improved end-user service efficiency, and a wider range of multi-media applications are expected with the new 5G wireless services. The dramatic increase in the number of base stations required to meet these criteria, which undermines the low-cost constraints imposed by operators, demonstrates the need for a paradigm shift in modern network architecture. Alternative formats will be required for next-generation architectures, where simplicity is the primary goal. The number of connections is expected to increase rapidly, breaking the inherent complexity of traditional coherent solutions and lowering the resulting cost percentage. A novel implementation model is used to migrate complex-nature modulation structures in a highly efficient and cost-effective manner. Theoretical work to analyses modulations’ behavior over a wired/fiber setup and wireless mode is also provided. The state-of-the-art computational complexity, simplicity, and ease of execution while maintaining efficiency throughput and bit error rate.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.