As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Breast cancer is one of the most deadly diseases encountered among women for which the cause is not clearly defined yet. Early diagnosis may help the physicians in the treatment of this deadly disease which could turn out fatal otherwise. Machine Learning techniques are employed in the process of detecting breast cancer with greater accuracy. Individual classifiers employed in this process, predicted the disease with less accuracy when compared with ensemble models. Ensemble methods employ a group of classifiers to individually classify the data. It then combines the result of the individual classifiers using weighted voting of their predictions. Ensemble machines perform better than individual models and show improved levels in the accuracy of the prediction system. This paper examines and evaluates different ensemble machines that are used in the prediction of breast cancer and tries to identify the combinations that prove to be better than the existing ones.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.