As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
ELPA: A Parallel Solver for the Generalized Eigenvalue Problem1
Authors
Hans-Joachim Bungartz, Christian Carbogno, Martin Galgon, Thomas Huckle, Simone Köcher, Hagen-Henrik Kowalski, Pavel Kus, Bruno Lang, Hermann Lederer, Valeriy Manin, Andreas Marek, Karsten Reuter, Michael Rippl, Matthias Scheffler, Christoph Scheurer
For symmetric (hermitian) (dense or banded) matrices the computation of eigenvalues and eigenvectors Ax = λBx is an important task, e.g. in electronic structure calculations. If a larger number of eigenvectors are needed, often direct solvers are applied. On parallel architectures the ELPA implementation has proven to be very efficient, also compared to other parallel solvers like EigenExa or MAGMA. The main improvement that allows better parallel efficiency in ELPA is the two-step transformation of dense to band to tridiagonal form. This was the achievement of the ELPA project. The continuation of this project has been targeting at additional improvements like allowing monitoring and autotuning of the ELPA code, optimizing the code for different architectures, developing curtailed algorithms for banded A and B, and applying the improved code to solve typical examples in electronic structure calculations. In this paper we will present the outcome of this project.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.