As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recently there has been an increasing interest in applying information technology to support the diagnosis of diseases such as cancer. In this paper, we present a hybrid approach using case-based reasoning (CBR) and rule-based reasoning (RBR) to support cancer diagnosis. We used symptoms, signs, and personal information from patients as inputs to our model. To form specialized diagnoses, we used rules to define the input factors' importance according to the patient's characteristics. The model's output presents the probability of the patient having a type of cancer. To carry out this research, we had the approval of the ethics committee at Napoleão Laureano Hospital, in João Pessoa, Brazil. To define our model's cases, we collected real patient data at Napoleão Laureano Hospital. To define our model's rules and weights, we researched specialized literature and interviewed health professional. To validate our model, we used K-fold cross validation with the data collected at Napoleão Laureano Hospital. The results showed that our approach is an effective CBR system to diagnose cancer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.