As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Social media sites, such as Twitter, are a rich source of many kinds of information, including health-related information. Accurate detection of entities such as diseases, drugs, and symptoms could be used for biosurveillance (e.g. monitoring of flu) and identification of adverse drug events. However, a critical assessment of performance of current text mining technology on Twitter has not been done yet in the medical domain. Here, we study the development of a Twitter data set annotated with relevant medical entities which we have publicly released. The manual annotation results show that it is possible to perform high-quality annotation despite of the complexity of medical terminology and the lack of context in a tweet. Furthermore, we have evaluated the capability of state-of-the-art approaches to reproduce the annotations in the data set. The best methods achieve F-scores of 55–66%. The data analysis and the preliminary results provide valuable insights on identifying medical entities in Twitter for various applications.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.