As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In many cases, the success of a manipulation action performed by a robot is determined by how it is executed and by how the robot moves during the action. Examples are tasks such as unscrewing a bolt, pouring liquids and flipping a pancake. This aspect is often abstracted away in AI planning and action languages that assume that an action is successful as long as all preconditions are fulfilled. In this paper we investigate how constraint-based motion representations used in robot control can be combined with a semantic knowledge base in order to let a robot reason about movements and to automatically generate executable motion descriptions that can be adapted to different robots, objects and tools.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.