As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Various applications, such as critique-based recommendation systems and analogical classifiers, rely on knowledge of how different entities relate. In this paper, we present a methodology for identifying such semantic relationships, by interpreting them as qualitative spatial relations in a conceptual space. In particular, we use multi-dimensional scaling to induce a conceptual space from a relevant text corpus and then identify directions that correspond to relative properties such as “more violent than” in an entirely unsupervised way. We also show how a variant of FOIL is able to learn natural categories from such qualitative representations, by simulating a fortiori inference, an important pattern of commonsense reasoning.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.