As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In order to conserve energy, battery powered embedded systems are typically designed with very low-power modules that offer limited computational power and communication bandwidth and therefore, are generally applicable to low-sample-rate intermittent applications. On the other hand, enabling an embedded system with a high-throughput processing resource such as an FPGA, high-throughput processing performance that is typically required in high-sample rate monitoring applications can be achieved. However, the high power consumption associated with an FPGA poses a major challenge in attaining significant lifetime for a battery-powered embedded system. In this paper, we investigate energy consumption of an SRAM-based FPGA in relation to duty-cycle applications. In order to achieve long operational lifetime in an FPGA-based embedded system, the possible options to dynamically manage the power consumption are studied and discussed. The experimental results suggest that the SRAM-based FPGA, XC6SLX16 that provides ample logic resources in relation to typical high-sample rate monitoring applications, can be used in a battery operated embedded systems while minimizing the energy consumption to 2.56 mJ for inactive duration of 235 ms or above.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.