As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We consider logic-based argumentation in which an argument is a pair (Φ, α), where the support Φ is a minimal consistent set of formulæof a given knowledge base that entails the formula α. We study the complexity of two different problems: the existence of a support and the verification of the validity of an argument. When arguments are given in the full language of propositional logic these problems are computationally costly tasks, they are respectively ΣP2- and DP-complete. We study these problems in Schaefer's famous framework. We consider the case where formulæare taken from a class of formulæin generalized conjunctive normal form. This means that the propositional formulæ considered are conjunctions of constraints taken from a fixed finite language Γ. We show that according to the properties of this language Γ, deciding whether there exists a support for a claim in a given knowledge base is either polynomial, NP-complete, coNP-complete or ΣP2-complete. We also obtain a dichotomous classification, P or DP-complete, for the verification problem.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.