As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The techniques for segmentation and classification of hyperspectral images are very costly, which makes them good candidates for parallel and, in particular, GPU processing. In this paper we present a GPU implementation of a segmentation strategy for hyperspectral images consisting in the calculation of a morphological gradient operator that reduces the dimensionality of the hyperspectral image followed by the calculation of a watershed transform over the resulting 2D image. We have studied the main issues for the efficient implementation of the algorithms in GPU: the exploitation of thousands of threads available in this architecture and the adequate use of the device bandwidth. The tests show the efficiency of the GPU implementation indicating that the processing of hyperspectral images can be performed in real-time even on commodity GPUs like the one used in the experiments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.