As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we propose a conceptual indexing documents approach based on an enriched ontology. We used a minimal generic basis of association rules (ARs) between terms, in order to automatically enrich an existing domain ontology. The final result is a proxemic conceptual network which contains additional implicit knowledge. Therefore, to evaluate our ontology enrichment approach, we propose a document indexing approach in IR based on this proxemic network. The experiments carried out on the OHSUMED document collection of the TREC 9 filtring track and MeSH ontology, showed that our conceptual indexing approach could considerably enhance information retrieval effectiveness.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.