As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a target detection and recognition mission by an autonomous Unmanned Aerial Vehicule (UAV) modeled as a Partially Observable Markov Decision Process (POMDP). The POMDP model deals in a single framework with both perception actions (controlling the camera's view angle), and mission actions (moving between zones and flight levels, landing) needed to achieve the goal of the mission, i.e. landing in a zone containing a car whose model is recognized as a desired target model with sufficient belief. We explain how we automatically learned the probabilistic observation POMDP model from statistical analysis of the image processing algorithm used on-board the UAV to analyze objects in the scene. We also present our “optimize-while-execute” framework, which drives a POMDP sub-planner to optimize and execute the POMDP policy in parallel under action duration constraints, reasoning about the future possible execution states of the robotic system. Finally, we present experimental results, which demonstrate that Artificial Intelligence techniques like POMDP planning can be successfully applied in order to automatically control perception and mission actions hand-in-hand for complex time-constrained UAV missions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.