As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Much progress has been made in the research and development of automated planning algorithms in recent years. Though incremental improvements in algorithm design are still desirable, complementary approaches such as problem reformulation are important in tackling the high computational complexity of planning. While machine learning and adaptive techniques have been usefully applied to automated planning, these advances are often tied to a particular planner or class of planners that are coded to exploit that learned knowledge. A promising research direction is in exploiting knowledge engineering techniques such as reformulating the planning domain and/or the planning problem to make the problem easier to solve for general, state-of-the-art planners. Learning (outer) entanglements is one such technique, where relations between planning operators and initial or goal atoms are learned, and used to reformulate a domain by removing unneeded operator instances. Here we generalize this approach significantly to cover relations between atoms and pairs of operators themselves, and develop a technique for producing inner entanglements. We present methods for detecting inner entanglements and for using them to do problem reformulation. We provide a theoretical treatment of the area, and an empirical evaluation of the methods using standard planning benchmarks and state-of-the-art planners.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.