As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Content-Based Image Retrieval (CBIR) has been a topic of research interest for nearly a decade. Approaches to date use image features for describing content. A survey of the literature shows that progress has been limited to prototype systems that make gross assumptions and approximations. Additionally, research attention has been largely focused on stock image collections. Advances in medical imaging have led to growth in large image collections. At the Lister Hill National Center for Biomedical Communication, an R&D division of the National Library of Medicine, we are conducting research on CBIRfor biomedical images. We maintain an archive of over 17,000 digitized x-rays of the cervical and lumbar spine from the second National Health and Nutrition Examination Survey (NHANES II). In addition, we are developing an archive of a large number of digitized 35mm color slides of the uterine cervix. Our research focuses on developing techniques for hybrid text/image query-retrieval from the survey text and image data. In this paper we present the challenges in developing CBIR of biomedical images and results from our research efforts.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.