As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We explore a knowledge-rich (abstraction) approach to summarization and apply it to multiple documents from an online medical encyclopedia. A semantic processor functions as the source interpreter and produces a list of predications. A transformation stage then generalizes and condenses this list, ultimately generating a conceptual condensate for a given disorder topic. We provide a preliminary evaluation of the quality of the condensates produced for a sample of four disorders. The overall precision of the disorder conceptual condensates was 87%, and the compression ratio from the base list of predications to the final condensate was 98%. The conceptual condensate could be used as input to a text generator to produce a natural language summary for a given disorder topic.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.