As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical dermatology cases are presented as images and semistructured text describing skin lesions and their relationships to disease. Metadata assignment to such cases is hampered by lack of a standardized dermatology vocabulary and facilitated methods for indexing legacy collections. In this pilot study descriptive clinical text from Dermatlas, a Web-based repository of dermatology cases, was indexed to Medical Subject Heading (MeSH®) terms using the National Library of Medicine’s Medical Text Indexer (MTI). The MTI is an automated text processing system that derives ranked lists of MeSH terms to describe the content of medical journal citations using knowledge from the Unified Medical Language System® (UMLS®) and from MEDLINE®. For a representative, random sample of 50 Dermatlas cases, the MTI frequently derived MeSH indexing terms that matched expert-assigned terms for Diagnoses (88%), Lesion Types (72%), and Patient Characteristics (Gender and Age Groups, 62% and 84% respectively). This pilot demonstrates the potential for extending the MTI to automate indexing of clinical case presentations and for using MeSH to describe aspects of clinical dermatology.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.