As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Domain parsing, or the detection of signals of protein structural domains from sequence data, is a complex and difficult problem. If carried out reliably it would be a powerful interpretive and predictive tool for genomic and proteomic studies. We report on a novel approach to domain parsing using consensus techniques based on Hidden Markov Models (HMMs) and BLAST searches built from a training set of 1471 continuous structural domains from the Dali Domain Dictionary (DDD). Validation on an independent test sample of family-matched structural domain sequences from the Scop database yields a consensus prediction performance rate of 75.5%, well above the 58% obtained by simple agreement of methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.