As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper deals with two important issues related to the handling of uncertain and causal information in a qualitative (or min-based) possibility theory framework. The first issue addresses encoding interventions using the possibilistic conditioning under uncertain inputs problem. More precisely, we analyze the min-based possibilistic counterpart of Jeffrey's rule of conditioning and point out that contrary to the probabilistic setting, this rule does not guarantee the existence of a solution satisfying the kinematics conditions. Then we show that this rule can naturally encode the concept of interventions in causal graphical models. Surprisingly enough, we show that when dealing with interventions the min-based counterpart of Jeffrey's rule provides a unique solution. The second issue deals with the efficient handling of sets of observations and interventions in min-based possibilistic networks, where we propose a solution based on a series of equivalent and efficient transformations on the initial causal graph.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.