As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We study the problem of fairly dividing a set of goods amongst a group of agents, when those agents have preferences that are ordinal relations over alternative bundles of goods (rather than utility functions) and when our knowledge of those preferences is incomplete. The incompleteness of the preferences stems from the fact that each agent reports their preferences by means of an expression of bounded size in a compact preference representation language. Specifically, we assume that each agent only provides a ranking of individual goods (rather than of bundles). In this context, we consider the algorithmic problem of deciding whether there exists an allocation that is possibly (or necessarily) envy-free, given the incomplete preference information available, if in addition some mild economic efficiency criteria need to be satisfied. We provide simple characterisations, giving rise to simple algorithms, for some instances of the problem, and computational complexity results, establishing the intractability of the problem, for others.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.