As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The Internet is constantly growing, proposing more and more services and sources of information. Modeling personal preferences enables recommender systems to identify relevant subsets of items. These systems often rely on filtering techniques based on symbolic or numerical approaches in a stochastic context. In this paper, we focus on item-based collaborative filtering (CF) techniques. We propose a new approach combining a classic CF algorithm with a reinforcement model to get a better accuracy. We deal with this issue by exploiting probabilistic skewnesses in triplets of items.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.