As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Grammar induction is one of attractive research areas of natural language processing. Since both supervised and to some extent semi-supervised grammar induction methods require large treebanks, and for many languages, such treebanks do not currently exist, we focused our attention on unsupervised approaches. Constituent Context Model (CCM) seems to be the state of the art in unsupervised grammar induction. In this paper, we show that the performance of CCM in free word order languages (FWOLs) such as Persian is inferior to that of fixed order languages such as English. We also introduce a novel approach, called parent-based constituent context model (PCCM), and show that by using some history notion of context and constituent information of each span's parent, the performance of CCM, especially in dealing with FWOLs, can be significantly improved.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.