As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With the development of deep convolutional neural network, recent research on single image super-resolution (SISR) has achieved great achievements. In particular, the networks, which fully utilize features, achieve a better performance. In this paper, we propose an image super-resolution dual features extraction network (SRDFN). Our method uses the dual features extraction blocks (DFBs) to extract and combine low-resolution features, with less noise but less detail, and high-resolution features, with more detail but more noise. The output of DFB contains the advantages of low- and high-resolution features, with more detail and less noise. Moreover, due to that the number of DFB and channels can be set by weighting accuracy against size of model, SRDFN can be designed according to actual situation. The experimental results demonstrate that the proposed SRDFN performs well in comparison with the state-of-the-art methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.