As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Nitrogen-vacancy (NV) centers in diamond have emerged in the last decade as a prominent platform for quantum technologies. As for any qubit system, a good understanding of their local environment is crucial to build quantum devices protected from detrimental noise. Here, we describe in detail a method to spectroscopically characterize the spin bath around an NV center, even when the NV coherence time is short, and identify the coherent coupling with the nearest nuclear spins. In the regime of weak qubit-bath coupling, the acquired knowledge of the bath reliably predicts the qubit dynamics under different controls.