As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a detailed error annotation for morphologically rich languages. The described approach is used to create Latvian Language Learner corpus (LaVA) which is part of a currently ongoing project Development of Learner corpus of Latvian: methods, tools and applications. There is no need for an advanced multi-token error annotation schema, because error annotated texts are written by beginner level (A1 and A2) who use simple syntactic structures. This schema focuses on in-depth categorization of spelling and word formation errors. The annotation schema will work best for languages with relatively free word order and rich morphology.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.