As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Human-computer interaction, especially in form of dialogue systems and chatbots, has become extremely popular during the last decade. The dominant approach in the recent development of practical virtual assistants is the application of deep learning techniques. However, in case of less resourced language (or domain), the application of deep learning could be very complicated due to the lack of necessary training data. In this paper, we discuss possibility to apply hybrid approach to dialogue modelling by combining data-driven approach with the knowledge-based approach. Our hypothesis is that by combining different agents (general domain chatbot, frequently asked questions module and goal oriented virtual assistant) into single virtual assistant we can facilitate adequacy and fluency of the conversation. We investigate suitability of different widely used techniques in less resourced settings. We demonstrate feasibility of our approach for morphologically rich less resourced language Latvian through initial virtual assistant prototype for the student service of the University of Latvia.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.