As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we tackle an intent detection problem for the Lithuanian language with the real supervised data. Our main focus is on the enhancement of the Natural Language Understanding (NLU) module, responsible for the comprehension of user’s questions. The NLU model is trained with a properly selected word vectorization type and Deep Neural Network (DNN) classifier. During our experiments, we have experimentally investigated fastText and BERT embeddings. Besides, we have automatically optimized different architectures and hyper-parameters of the following DNN approaches: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM) and Convolutional Neural Network (CNN). The highest accuracy=∼0.715 (∼0.675 and ∼0.625 over random and majority baselines, respectively) was achieved with the CNN classifier applied on a top of BERT embeddings. The detailed error analysis revealed that prediction accuracies degrade for the least covered intents and due to intent ambiguities; therefore, in the future, we are planning to make necessary adjustments to boost the intent detection accuracy for the Lithuanian language even more.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.