As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Neural machine translation systems typically are trained on curated corpora and break when faced with non-standard orthography or punctuation. Resilience to spelling mistakes and typos, however, is crucial as machine translation systems are used to translate texts of informal origins, such as chat conversations, social media posts and web pages. We propose a simple generative noise model to generate adversarial examples of ten different types. We use these to augment machine translation systems’ training data and show that, when tested on noisy data, systems trained using adversarial examples perform almost as well as when translating clean data, while baseline systems’ performance drops by 2-3 BLEU points. To measure the robustness and noise invariance of machine translation systems’ outputs, we use the average translation edit rate between the translation of the original sentence and its noised variants. Using this measure, we show that systems trained on adversarial examples on average yield 50 % consistency improvements when compared to baselines trained on clean data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.