As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Automatic Speech Recognition (ASR) requires huge amounts of real user speech data to reach state-of-the-art performance. However, speech data conveys sensitive speaker attributes like identity that can be inferred and exploited for malicious purposes. Therefore, there is an interest in the collection of anonymized speech data that is processed by some voice conversion method. In this paper, we evaluate one of the voice conversion methods on Latvian speech data and also investigate if privacy-transformed data can be used to improve ASR acoustic models. Results show the effectiveness of voice conversion against state-of-the-art speaker verification models on Latvian speech and the effectiveness of using privacy-transformed data in ASR training.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.