As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In a decision-making problem, there is often some uncertainty regarding the user preferences. We assume a parameterised utility model, where in each scenario we have a utility function over alternatives, and where each scenario represents a possible user preference model consistent with the input preference information. With a set A of alternatives available to the decision maker, we can consider the associated utility function, expressing, for each scenario, the maximum utility among the alternatives. We consider two main problems: firstly, finding a minimal subset of A that is equivalent to it, i.e., that has the same utility function. We show that for important classes of preference models, the set of so-called possibly strictly optimal alternatives is the unique minimal equivalent subset. Secondly, we consider how to compare A to another set of alternatives B, where A and B correspond to different initial decision choices. We derive mathematical results that allow different computational techniques for these two problems, using linear programming, and especially, with a novel approach using the extreme points of the epigraph of the utility function.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.