As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Cancer risks may be influenced by local exposures such as working conditions or nuclear waste repositories. To find influences, local accumulations of cancer rates are used, for which finely granulated data should be utilized. In particular, high-resolution demographic data for a reference population are important, but often not available for data protection reasons. Therefore, estimation methods are necessary to approximate small-scale demographic data as accurately as possible. This paper presents an approach to project existing epidemiological and public data to a common granularity with respect to attribute characteristics such as place of residence, age or smoking status to allow for analyses such as local accumulations and consistently falls below an average relative error of 5%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.