As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recent formal approaches towards causality have made the concept ready for incorporation into the technical world. However, causality reasoning is computationally hard; and no general algorithmic approach exists that efficiently infers the causes for effects. Thus, checking causality in the context of complex, multi-agent, and distributed socio-technical systems is a significant challenge. Therefore, we conceptualize an intelligent and novel algorithmic approach towards checking causality in acyclic causal models with binary variables, utilizing the optimization power in the solvers of the Boolean Satisfiability Problem (SAT). We present two SAT encodings, and an empirical evaluation of their efficiency and scalability. We show that causality is computed efficiently in less than 5 seconds for models that consist of more than 4000 variables.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.