As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We analyze the requirements for an educational Question Answering (QA) system operating on social media content. As a result, we identify a set of advanced natural language processing (NLP) technologies to address the challenges in educational QA. We conducted an inter-annotator agreement study on subjective question classification in the Yahoo!Answers social Q&A site and propose a simple, but effective approach to automatically identify subjective questions. We also developed a two-stage QA architecture for answering learners' questions. In the first step, we aim at re-using human answers to already answered questions by employing question paraphrase identification [1]. In the second step, we apply information retrieval techniques to perform answer retrieval from social media content. We show that elaborate techniques for question preprocessing are crucial.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.