As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Experimental analysis on standard brass alloy has been carried out using a high pressure gas gun. Perforation tests have been performed for a variety of impact velocities from 40 to 120 m/s in order to study the material behaviour and to define failure modes.
The main aim of the study has been to provide results using an innovative thermal chamber that allows us to heat specimens before impact. The range of available temperatures is from the room temperature up to 260°C. The experimental study has allowed to discuss the ballistic properties of the structure. The ballistic resistance of sheet plates is strongly dependent on the material behaviour under dynamic loading and changes with temperature. The ballistic properties are also intensely related to interaction between the projectile and thin brass target. The results in terms of the ballistic curve VR (residual velocity) versus V0 (initial velocity) have shown the temperature effect on the residual kinetic energy and thus, on the energy absorbed by the plate, revealing a thermal softening of the brass. The ballistic limit, corresponding to the maximum impact velocity without complete perforation, has decreased by 5–7% for the highest temperature considered. A changing failure pattern is observed. The number of petals varies as a function of impact velocity and temperature. It can be concluded based on experimental observations that thermal softening is a key point on the process of perforation. Preliminary temperature records have been provided using a thermal imaging camera.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.