As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Background: Manual skills teaching, such as physiotherapy education, requires immediate teacher feedback for the students during the learning process, which to date can only be performed by expert trainers.
Objectives: A machine-learning system trained only on correct performances to classify and score performed movements, to identify sources of errors in the movement and give feedback to the learner.
Methods: We acquire IMU and sEMG sensor data from a commercial-grade wearable device and construct an HMM-based model for gesture classification, scoring and feedback giving. We evaluate the model on publicly available and self-generated data of an exemplary movement pattern executions.
Results: The model achieves an overall accuracy of 90.71% on the public dataset and 98.9% on our dataset. An AUC of 0.99 for the ROC of the scoring method could be achieved to discriminate between correct and untrained incorrect executions.
Conclusion: The proposed system demonstrated its suitability for scoring and feedback in manual skills training.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.