As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Lately, several studies started to investigate the existence of links between cannabis use and psychotic disorders. This work proposes a refined Machine Learning framework for understanding the links between cannabis use and 1st episode psychosis. The novel framework concerns extracting predictive patterns from clinical data using optimised and post-processed models based on Gaussian Processes, Support Vector Machines, and Neural Networks algorithms. The cannabis use attributes' predictive power is investigated, and we demonstrate statistically and with ROC analysis that their presence in the dataset enhances the prediction performance of the models with respect to models built on data without these specific attributes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.