As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Customers' mood information is acquired to facilitate marketers' understanding in order to tailor the marketing strategies for positive outcomes optimization. Mood can be reasonably hypothesized as one of the factor that influences customers' decision in buying the products or services offered. There have been many researchers reporting the correlation between moods and buying decision. However, to date, there is no such method that can exactly quantify the customer's mood. Typically, a questionnaire is given to the participant to gauge their mood on the focused product or services. The drawback from such approach is that participants can fake, exaggerate or suppress their mood resulting to questionable inference. Hence, a new method of data acquisition is needed to be able to visualize the dynamics of the customers' mood for more accurate analysis. In this paper, the customer brain signal is captured using electroencephalogram (EEG) to track and record brain wave patterns in regard to their emotional states. The sequence of emotion is then used to identify their mood. A computational visualization technique is adopted to facilitate understanding of one minute emotion transition that assembling mood. The experimental results show that such approach is feasible and can be extended to study mood in a more comprehensive manner. It is envisaged that this work will be the catalyst for large mood data analysis tool that can help researchers in the near future to look at mood and buying decision for the improvement of comprehensive customer understanding in a more accurate manner
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.