As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
When entering a system, an agent should be aware of the obligations and prohibitions (collectively norms) that affect it. Existing solutions to this norm identification problem make use of observations of either norm compliant, or norm violating, behaviour. Thus, they assume an extreme situation where norms are typically violated, or complied with. In this paper we propose a Bayesian approach to norm identification which operates by learning from both norm compliant and norm violating behaviour. We evaluate our approach's effectiveness empirically and compare its accuracy to existing approaches. By utilising both types of behaviour, we not only overcome a major limitation of such approaches, but also obtain improved performance over the state of the art, allowing norms to be learned with fewer observations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.