As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This work addresses active learning for multi-class classification. Active learning algorithms optimize classifier performance by successively selecting the most beneficial instances from a pool of unlabeled instances to be labeled by an oracle. In this work, we study the influence of the following factors for active learning: (1) an instance's impact, (2) its posterior, and (3) the reliability of this posterior. To do so, we propose a new decision-theoretic approach, called multi-class probabilistic active learning (McPAL). Building on a probabilistic active learning framework, our approach is non-myopic, fast, and optimizes a performance measure (like accuracy) directly. Considering all influence factors, McPAL determines the expected gain in performance to compare the usefulness of instances. For this purpose, it calculates the density weighted expectation over the true posterior and over all possible labeling combinations in a closed-form solution. Thus, in contrast to other multi-class algorithms, it considers the posterior's reliability which improved the performance. In our experimental evaluation, we show that the combination of the selected influence factors works best and that McPAL is superior in comparison to various other multi-class active learning algorithms on six datasets.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.