As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The manner in which people preferentially interact with others like themselves suggests that information about social connections may be useful in the surveillance of opinions for public health purposes. We examined if social connection information from tweets about human papillomavirus (HPV) vaccines could be used to train classifiers that identify anti-vaccine opinions. From 42,533 tweets posted between October 2013 and March 2014, 2,098 were sampled at random and two investigators independently identified anti-vaccine opinions. Machine learning methods were used to train classifiers using the first three months of data, including content (8,261 text fragments) and social connections (10,758 relationships). Connection-based classifiers performed similarly to content-based classifiers on the first three months of training data, and performed more consistently than content-based classifiers on test data from the subsequent three months. The most accurate classifier achieved an accuracy of 88.6% on the test data set, and used only social connection features. Information about how people are connected, rather than what they write, may be useful for improving public health surveillance methods on Twitter.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.