As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The automatic processing of non-English clinical documents is massively hampered by the lack of publicly available medical language resources for training, testing and evaluating NLP components. We suggest sharing statistical models derived from access-protected clinical documents as a reasonable substitute and provide solutions for sentence splitting, tokenization and POS tagging of German clinical texts. These three components were trained on the confidential FRAMED corpus, a non-sharable collection of various German-language clinical document types. The models derived therefrom outperform alternative components from OPENNLP and the Stanford POS tagger, also trained on FRAMED.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.