As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper we investigate a new approach for extracting features from a texture using Dijkstra's algorithm. The method maps images into graphs and gray level differences into transition costs. Texture is measured over the whole image comparing the costs found by Dijkstra's algorithm with the geometric distance of the pixels. In addition, we compare and combine our new strategy with a previous method for describing textures based on Dijkstra's algorithm. For each set of features, a support vector machine (SVM) is trained. The set of classifiers is then combined by weighted sum rule. Combining the proposed set of features with the well-known local binary patterns and local ternary patterns boosts performance. To assess the performance of our approach, we test it using six medical datasets representing different image classification problems. Tests demonstrate that our approach outperforms the performance of standard methods presented in the literature. All source code for the approaches tested in this paper will be available at: http://www.dei.unipd.it/node/2357.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.