As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We focus on a design-of-experiments methodology for developing empirical performance models of GPU kernels. Recently, we developed an iterative active learning algorithm that adaptively selects parameter configurations in batches for concurrent evaluation on CPU architectures in order to build performance models over the parameter space. In this paper, we illustrate the adoption of the algorithm when concurrent evaluations are not possible, which is particularly useful in the absence of GPU clusters. We present an empirical study of the algorithm on a diverse set of GPU kernels and hardware. We show that even when concurrent evaluations are not possible, the default batch mode of the algorithm yields better models and the iterative active learning algorithm reduces the overall time required to obtain high-quality empirical performance models for GPU kernels.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.