As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Extracting Key Sentences with Latent Argumentative Structuring
Patrick Ruch, Robert Baud, Christine Chichester, Antoine Geissbühler, Frédérique Lisacek, Johann Marty, Dietrich Rebholz-Schuhmann, Imad Tbahriti, Anne-Lise Veuthey
PROBLEM: Key word assignment has been largely used in MEDLINE to provide an indicative “gist” of the content of articles. Abstracts are also used for this purpose. However with usually more than 300 words, abstracts can still be regarded as long documents; therefore we design a system to select a unique key sentence. This key sentence must be indicative of the article's content and we assume that abstract's conclusions are good candidates. We design and assess the performance of an automatic key sentence selector, which classifies sentences into 4 argumentative moves: PURPOSE, METHODS, RESULTS and CONCLUSION. METHODS: We rely on Bayesian classifiers trained on automatically acquired data. Features representation, selection and weighting are reported and classification effectiveness is evaluated on the four classes using confusion matrices. We also explore the use of simple heuristics to take the position of sentences into account. Recall, precision and F-scores are computed for the CONCLUSION class. For the CONCLUSION class, the F-score reaches 84%. Automatic argumentative classification is feasible on MEDLINE abstracts and should help user navigation in such repositories.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.