As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Many studies have constructed predictive models for outcome after traumatic brain injury. Most of these attempts focused on dichotomous result, such as alive vs dead or good outcome vs poor outcome. If we want to predict more specific levels of outcome, we need more sophisticated models. We conducted this study to determine if artificial neural network modeling would predict outcome in five levels of Glasgow Outcome Scale (death, persistent vegetative state, severe disability, moderate disability, and good recovery) after moderate to severe head injury. The database was collected from a nation-wide epidemiological study of traumatic brain injury in Taiwan from July 1, 1995 to June 30, 1998. There were total 18583 records in this database and each record had thirty-two parameters. After pruning the records with minor cases (GCS 13) and missing data in the 132 variables, the number of cases decreased from 18583 to 4460. A step-wise logistic regression was applied to the remaining data set and 10 variables were selected as being statically significant in predicting outcome. These 10 variables were used as the input neurons for constructing neural network. Overall, 75.8% of predictions of this model were correct, 14.6% were pessimistic, and 9.6% optimistic. This neural network model demonstrated a significant difference of performance between different levels of Glasgow Outcome Scale. The prediction performance of dead or good recovery is best and the prediction of vegetative state is worst. An artificial neural network may provide a useful "second opinion" to assist neurosurgeon to predict outcome after traumatic brain injury.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.