As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability in Main Profile by accelerating the mode decision task of the SVC encoding stage using Machine Learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.