As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Natural human locomotion contains variations, which are important for creating realistic animations. Most of all when simulating a group of avatars, the resulting motions will appear robotic and not natural anymore if all avatars are simulated with the same walk cycle. While there is a lot of research work focusing on high-quality, interactive motion synthesis the same work does not include rich variations in the generated motion. We propose a novel approach to high-quality, interactive and variational motion synthesis. We successfully integrated concepts of variational autoencoders in a fully-connected network. Our approach can learn the dataset intrinsic variation inside the hidden layers. Different hyperparameters are evaluated, including the number of variational layers and the frequency of random sampling during motion generation. We demonstrate that our approach can generate smooth animations including highly visible temporal and spatial variations and can be utilized for reactive online locomotion synthesis.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.