As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Common Data Elements (CDEs) are necessary for ensuring data sharing across studies, providing comparability, and enabling aggregation and meta-analyses. The process of developing a set of CDEs for a given clinical research area has typically been arduous and time-consuming. In this work we introduce an automated pipeline that can greatly aid the process by identifying, aggregating, and ranking relevant CDEs from the outcomes of studies registered on clinicaltrials.gov (CTG). The pipeline uses the Medical Subject Headings (MeSH) ontology to group and rank candidate CDEs by specific diseases. The initial CDE pipeline has been tested using an emerging research domain. The resulting CDEs output was aligned with the current recommendations in the corresponding subject area. Further development of automated means for CDE generation based on structured information from CTG and MeSH is warranted.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.