As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Implementing Guideline-Based, Experience-Based, and Case-Based Approaches to Enrich Decision Support for the Management of Breast Cancer Patients in the DESIREE Project
DESIREE is a European-funded project to improve the management of primary breast cancer. We have developed three decision support systems (DSSs), a guideline-based, an experience-based, and a case-based DSSs, resp. GL-DSS, EXP-DSS, and CB-DSS, that operate simultaneously to offer an enriched multi-modal decision support to clinicians. A breast cancer knowledge model has been built to describe within a common ontology the data model and the termino-ontological knowledge used for representing breast cancer patient cases. It allows for rule-based and subsumption-based reasoning in the GL-DSS to provide best patient-centered reconciled care plans. It also allows for using semantic similarity in the retrieval algorithm implemented in the CB-DSS. Rainbow boxes are used to display patient cases similar to a given query patient. This innovative visualization technique translates the question of deciding the most appropriate treatment into a question of deciding the colour dominance among boxes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.