As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Despite manufacturing sub-components to a high precision, large over-constrained assemblies are often impossible to assemble to tolerance limits when variations are present. This necessitates expensive and time consuming variation management processes at assembly, such as shimming. Existing research has not established a methodology to model the variation propagation mechanisms that results in this assembly variation. This paper presents such a methodology, which has the ability to quantify the assembly variation of over-constrained assemblies at the planning stage, providing useful data for determining the most appropriate combination of fabrication and assembly processes to use for a given case. The methodology is validated using an aerospace wing spar assembly, and a sensitivity study completed to rank the key variation drivers in the over-constrained assembly.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.