As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present a knowledge-base to represent collated infectious disease risk (IDR) knowledge. The knowledge is about personal and contextual risk of contracting an infectious disease obtained from declarative sources (e.g. Atlas of Human Infectious Diseases). Automated prediction requires encoding this knowledge in a form that can produce risk probabilities (e.g. Bayesian Network – BN). The knowledge-base presented in this paper feeds an algorithm that can auto-generate the BN. The knowledge from 234 infectious diseases was compiled. From this compilation, we designed an ontology and five rule types for modelling IDR knowledge in general. The evaluation aims to assess whether the knowledge-base structure, and its application to three disease-country contexts, meets the needs of personalized IDR prediction system. From the evaluation results, the knowledge-base conforms to the system's purpose: personalization of infectious disease risk.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.